Trunk neural crest origin of dermal denticles in a cartilaginous fish
نویسندگان
چکیده
منابع مشابه
Trunk Neural Crest Has Skeletogenic Potential
During early vertebrate development, neural crest cells emerge from the dorsal neural tube, migrate into the periphery, and form a wide range of derivatives. There is, however, a significant difference between the cranial and trunk neural crest with respect to the diversity of cell types that each normally produces. Thus, while crest cells from all axial levels form neurons, glia, and melanocyt...
متن کاملMyelin in cartilaginous fish
Myelin is probably one of the most fascinating and innovative biological acquisition: a glia plasma membrane tightly wrapped around an axon and insulating it. Chondrichthyans (cartilaginous fishes) form a large group of vertebrates, and they are among oldest extant jawed vertebrate lineage. It has been known from studies 150 years ago, that they are positioned at the root of the successful appe...
متن کاملDevelopmental potential of trunk neural crest cells in the mouse.
The availability of naturally occurring and engineered mutations in mice which affect the neural crest makes the mouse embryo an important experimental system for studying neural crest cell differentiation. Here, we determine the normal developmental potential of neural crest cells by performing in situ cell lineage analysis in the mouse by microinjecting lysinated rhodamine dextran (LRD) into ...
متن کاملcKit+ cardiac progenitors of neural crest origin.
The degree to which cKit-expressing progenitors generate cardiomyocytes in the heart is controversial. Genetic fate-mapping studies suggest minimal contribution; however, whether or not minimal contribution reflects minimal cardiomyogenic capacity is unclear because the embryonic origin and role in cardiogenesis of these progenitors remain elusive. Using high-resolution genetic fate-mapping app...
متن کاملNeural crest origin of olfactory ensheathing glia.
Olfactory ensheathing cells (OECs) are a unique class of glial cells with exceptional translational potential because of their ability to support axon regeneration in the central nervous system. Although OECs are similar in many ways to immature and nonmyelinating Schwann cells, and can myelinate large-diameter axons indistinguishably from myelination by Schwann cells, current dogma holds that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2017
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.1713827114